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Logic and adjunctions

In [Lawvere, 1969] and [Lawvere, 1970] many logical concepts are shown to be part of
an adjoint pair.

terminal a >
⊥ a terminal

diagonal a ∧
∨ a diagonal

− ∧ A a A ⇒ −
∃ a weakening

weakening a ∀

Comprehension is an adjoint as well. How?
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Logic and adjunctions: how-to

Let P : Bop → InfSL an elementary existential doctrine, i.e.
• B a category with finite products,
• P a product-preserving functor,

where intuitively B is the category of contexts and substitutions and on a given Γ,
P(Γ) is the inf-semilattice of predicates on Γ, such that

(elem) for all Γ there exists δΓ ∈ P(Γ× Γ) s.t. for allΘ

æΘ,Γ : P(Θ× Γ) −→ P(Θ× (Γ× Γ))

A 7→ P⟨pr1,pr2⟩(A) ∧ P⟨pr2,pr3⟩(δΓ)

is left adjoint to P⟨pr1,pr2,pr2⟩, and

(ex) for all σ : Θ, the reindexing Pσ has a left adjoint ∃σ
+ naturality + coherence.
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First-order logic

Example (Tarski-Lindenbaum doctrine)

Let T be a first-order theory in a language L with variables V. Consider ctx of
variables x = (x1, . . . , xn) and substitutions [t1/y1, . . . , tm/ym] = [t/y] : x → y and the
functor LTT : ctxop → InfSL

LTT : x 7→ {wff formulae with free (at most) x}/⊣⊢T

A P⟨pr1,pr2⟩(A) ∧ P⟨pr2,pr3⟩(δ)

P(y, x) P(y, x, x)

æy,x

P⟨pr1,pr2,pr2⟩

⊣

y, x ` A(y, x)⇝ y, x, x′ ` A(y, x) ∧ δ(x, x′)
and
y, x, x′; A(y, x) ∧ δ(x, x′) ` B(y, x, x′) iff
y, x; A(y, x) ` B(y, x, x)
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First-order logic

Example (Tarski-Lindenbaum doctrine)

Let T be a first-order theory in a language L with variables V. Consider ctx of
variables x = (x1, . . . , xn) and substitutions [t1/y1, . . . , tm/ym] = [t/y] : x → y and the
functor LTT : ctxop → InfSL

LTT : x 7→ {wff formulae with free (at most) x}/⊣⊢T

A ∃y.A

P(y, x) P(x)

∃pr2

Ppr2

⊣

y, x ` A(y, x)⇝ x ` ∃y.A(y, x)
and
x; ∃y.A(y, x) ` B(x) iff
y, x; A(y, x) ` B(x)
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The comprehension adjunction

Let P : Bop → InfSL an elementary existential doctrine. Then one can define

B/Γ → P(Γ) : Θ
σ→ Γ 7→ ∃σ(1Θ) .

Example (Subsets)

Consider the eed Sub : Setop → InfSL, A 7→ 2A.

Set/A → 2A : B f→ A 7→ ∃f(1B) = f

where f(a) = 1 iff a ∈ Im(f)

Definition (Comprehension schema)

An eed satisfies the comprehension schema if for all Γ the functor above has a right
adjoint {Γ : −} which is natural in Γ.
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Proposition

The subset doctrine satisfies the comprehension schema.

f : B → A f

Set/A 2A

ιR : {A : R} → A R

∃−(1dom−)

{A:−}

⊣

*we abuse the notation {A : −} a bit

A A

2

B {A : R}

A

Rf

⊆

ιRf

!

If computing f produces f(a) = 1 iff a ∈ Im(f), then {A : R} = {a ∈ A | R(a) = 1}.
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Comprehension structures

Instead of:
Sub : Setop → InfSL and {Γ : −} : P(Γ) → B/Γ natural in Γ,
consider
p : Sub → Set1and {+ : −}, ι.

Sub

Set

p{+:−} ι

Definition ([Melliès and Rolland, 2020])
A comprehension structure on a functor p : E → B is a pair {+ : −}, ι with
{+ : −} : E → B a functor and ι : {+ : −} ⇒ p a natural transformation.

1Where Sub has objects (A, R) with A in Set and R : A → 2 and maps those making the obvious triangle
commute. This is the Grothendieck construction associated to P.
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Comprehension structures in the literature

The following are all comprehension structures (in order of increasing complexity).

• comprehension categories [Jacobs, 1993]: p is a
fibration, ι preserves cartesian maps

• D-categories [Ehrhard, 1988]: as above, plus a
terminal object functor 1 s.t. 1 a ιdom

• doctrine comprehensions [Lawvere, 1970]: as
above, plus p is bifibration

Sub

Set

p{+:−} ι

Sub Set2

Set

ι

codp

We want to do logic, so we focus on fibrations, but many results apply to generic
comprehension structures.
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Why fibrations?

Given a functor p : E → B, s is said to be
p-cartesian (or cartesian) over σ iff
p(s) = σ and for all r and τ such that
p(r) = σ ◦ τ there is a unique t such that
r = s ◦ t and p(t) = τ .
If s is cartesian and over σ, it is said to be
a cartesian lifting of σ.

C

B A E

Ξ

Θ Γ B

s

r

σ

σ◦τ
τ

p

Definition ([Grothendieck, 1961])
A functor p is a fibration iff for all σ : Θ → pA there exists a s : B → A cartesian over σ.

* for the moment “fibration” = “Grothendieck fibration”
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What fibrations?

Example (Codomain functor)

Consider the functor cod : B2 → B. A map is cod-cartesian iff it is a pullback in B.

C

B A E

Ξ

Θ Γ B

s

r

σ

σ◦τ
τ

p

C′

C B′ A′

B A B2

C

B A B

s

r

s

r
t

cod

is t
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Fibres and reindexing

Definition ([Grothendieck, 1961])
A functor p is a fibration iff for all σ : Θ → pA there exists a s : B → A cartesian over σ.

It is easy to see that, for a given σ, its lifting is unique up to (vertical) isomorphism.

• For each Γ, we can define a category EΓ
of objects over Γ and maps over idΓ

(called vertical), called the fibre over Γ.
• For each σ : Θ → Γ, existence of the

cartesian liftings allows us to move from
EΓ to EΘ (this is not precisely functorial,
because of uniqueness up to iso of the
lifting!).

EΘ EΓ

Aσ A E

Θ Γ B

σ∗

σ

p

∈ ∈
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Fibrations and pseudofunctors

Suppose we always have a way to decide on a given lifting for each pair (A, σ), that is
each fibration comes equipped with a cleavage. Then we have the following.

Theorem ([Grothendieck, 1961])
There is a 2-equivalence Fib(B) ∼= PsdFun[Bop,Cat].

Fibsplit(B) Fun[Bop,Cat]

Fibdisc(B) Fun[Bop, Set]

Fibfaith(B) Doc(B) = Fun×-pr[Bop, InfSl]

∼

∼

∼
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The thing with (non) uniqueness

Bien entendu, il y a intérêt le plus souvent à raisonner
directement sur des catégories fibrées sans utiliser
des clivages explicites, ce qui dispense en particulier
de faire appel, pour la notion simple de [...] foncteur
cartesién, à une interprétation pesante comme
ci-dessus. C’est pour éviter des lourdeurs
insupportables, et pour obtenir des énoncés plus
intrinsèques, que nous avons dû renoncer à partir de
la notion de catégorie clivée [...], qui passe au second
rang au profit de celle de catégories fibrée.
Il est d’ailleurs probable que, contrairement à l’usage
encore prépondérant maintenant, lié à d’anciennes
habitudes de pensée, il finira par s’avérer plus
commode dans les problèms universels, de ne pas
mettre l’accent sur une solution supposée choisie une
fois pour toutes mais de mettre toutes les solutions
sur un pied d’egalité.

Of course, it is most often useful to reason
directly about fibred categories without using
explicit cleavages, without the need in
particular to appeal, for the simple notion of [...]
cartesian functor, to a heavy interpretation as
above. It is to avoid unbearable heaviness, and
to obtain more intrinsic enunciations, that we
had to renounce (or depart) from the notion of
split categories [...], which takes second place
with respect to that of fibred categories.
It is moreover probable that, contrary to the use
still prevalent now, linked to old ways of thinking,
it will end up being more convenient for
universal problems, not to put the emphasis on
a supposed solution chosen once and for all,
but to put all solutions on an equal footing.

[Grothendieck, 1961]
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The syntactic comprehension category

Recall that a comprehension category is a comprehension
structure {+ : −}, ι on a functor p : E → B such that p is a
fibration and ι : E → B2 preserves cartesian maps.

E B2

B

ι
def
=χ

codp

Given a notion of type theory (in the sense of [Martin-Löf, 1984]) we can define a
comprehension category having:

• Bsyn of=-equivalence classes of contexts [Γ] = [x1 : A1], . . . , [xn : An] and maps

t : [Θ] → [Γ] iff for all i, Θ ` ti : Ai[t1/x1, . . . , ti−1/xi−1]

• Esyn of=-equivalence classes of typing judgements [Γ ` A Type] and
substitutions

(t, s) : [Θ ` B Type] → [Γ ` A Type] iff Θ, y : B ` s : A[t/x]

• χsyn : [Γ ` A Type] 7→ ( (x1, . . . , xn) : [Γ, x : A] → [Γ] ) ... and terms?
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Terms

We need to find a categorical object corresponding to a term.

[Γ]

[Γ, x : A] [Γ]
(x1,...,xn)wkn

(x1,...,xn, smth)
(x1,...,xn)

Γ ` x1 : A1
…
Γ ` xn : An[x1/x1, . . . , xn−1/xn−1]
Γ ` smth : A[x1/x1, . . . , xn/xn]

Hence we consider sections of comprehensions.
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Interpretation

Recall that a comprehension category is a comprehension
structure {+ : −}, ι on a functor p : E → B such that p is a
fibration and ι : E → B2 preserves cartesian maps.

E B2

B

ι
def
=χ

codp

Θ.B Γ.A

B A Θ Γ

Θ Γ
σ

cart σ

χB χA

σ

⌟ objects of B contexts
objects of E types in context

χA comprehension/context extension
domχA = Γ.A extended context
sections of χA terms of type A

pullback substitution
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Admissible rules

What rules are admissible here?

` Γ, x : A,∆ ctx
Γ, x : A,∆ ` x : A

(Var)
Γ ` a : A Γ, x : A,∆ ` J

Γ,∆[a/x] ` J [a/x]
(Sbst)

Γ ` A Type Γ,∆ ` J
Γ, x : A,∆ ` J

(Wkn)

for J ::= Γ ` A Type,Γ ` A = A′ Type,Γ ` a : A,Γ ` a = a′ : A,
plus classical rules for definitional equality, see [Hofmann, 1997].
Let’s see how.

Remark. Existence of the (unique up to
iso) cartesian lifting of σ at A induces a
suitable pullback. We might denote B = Aσ
in this case, but mind that (if we had to
have one) this forgets our choice!

Θ.B Γ.A

B A Θ Γ

Θ Γ
σ

cart σ

χB χA

σ

⌟
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The rule (Var)

` Γ, x : A,∆ ctx
Γ, x : A,∆ ` x : A

(Var)

Γ.A.∆

Γ.A.∆.A(χA ◦ χs) Γ.A

Γ.A.∆ . . . Γ.A Γχ χ χA

χAχA
⌟id

χs
!
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The rules (Sbst) and (Wkn)
for J = b : B

Γ ` a : A Γ, x : A,∆ ` b : B
Γ,∆[a/x] ` b[a/x] : B[a/x]

(Sbst)

Γ.∆a Γ.∆a.Ba Γ.A.∆.B

Γ.∆a Γ.A.∆

Γ Γ.Aa

χs

χB

a⌟

⌟
bid

b◦a

!

Γ ` A Type Γ,∆ ` b : B
Γ, x : A,∆ ` b : B

(Wkn)

Γ.A.∆ Γ.A.∆.B Γ.∆.B

Γ.A.∆ Γ.∆

Γ.A ΓχA

χs

χB

χA⌟

⌟
bid

b◦χA

!
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Another kind of model

A simple definition hides a lot of structure. Another perspective is that of categories
with families.

Definition (Cwf, [Dybjer, 1996])

A category with families is the data of
• a category B with terminal object>;
• a functor F = (Ty, Tm) : Bop → Fam, with Fam of set-indexed sets;
• for each Γ in B and A in Ty(Γ) an object Γ.A in B, together with two projections

pA : Γ.A → Γ and vA ∈ Tm(Γ.A, Ty pA(A)) such that for each σ : Θ → Γ and
a ∈ Tm(Tyσ(A)) there exists a unique morphismΘ → Γ.Amaking the obvious
triangles commute.

F(Γ) = ( Ty(Γ), (Tm(Γ, A))A∈Ty(Γ) )
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A discrete equivalence

Theorem (Cartmell, Moggi, Hofmann, Dybjer, Awodey)

Cwfs are equivalent to comprehension categories with p discrete.

E B2

B

χ

codp

p discrete
[Jacobs, 1993]

U̇ U

B
uu̇

Σ

∆

⊣

u, u̇ discrete
[Awodey, 2018]

Ty : Bop → Set

Tm :

(∫
Ty
)op

→ Set

[Dybjer, 1996]
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A general biequivalence

We extend the result to a biequivalence involving more than just discrete fibrations.
• Non-discrete: so that we can talk “syntactically” about theories where EΓ is

more than a set.
⇝ e.g. subtyping

• Biequivalence: so that we can learn a lesson from doctrines and manipulate the
notion of model, describe model morphisms and so on.
⇝ internalizing allows us to do more stuff
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Generalized cwfs

Definition [C.-Di Liberti, 2022]

A generalized category with families (or judgemental
dtt) is the data of two fibrations u, u̇, a functor Σ
making the triangle commute and preserving cartesian
maps (i.e. a 1-cell in Fib),∆ right adjoint to Σ with
cartesian unit and counit.

U̇ U

B
uu̇

Σ

∆

⊣

As in the discrete case, U collects types (in contexts), U̇ terms (fibred over types
and contexts), Σ performs typing,∆: (Γ ` A Type) 7→ (Γ.A ` x : A).
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Comparing compcats and gcwfs

Proposition [C.-Emmenegger, 2023]

A compcat induces a gcwf, and viceversa.

U̇ U

B
uu̇

Σ

∆

⊣ U B2

B

uϵ−

codu
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Comparing compcats and gcwfs

Proposition [C.-Emmenegger, 2023]

A compcat induces a gcwf, and viceversa.

E B2

B

χ

codp

Secχ E

B
p

U

∆

⊣

A AχA A

Γ Γ.A ΓχA

χAa∈Secχ

AχA AχAχA AχA A

Γ.A Γ.A.A Γ.A

Γ.A ΓχA

id

id

!

∆A

Does this ring any bells?
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It’s all comonads!

When trying to compare the two, one quickly notices the ubiquity of comonads:
• a gcwf is defined as an adjunction, hence we always have a comonad Σ∆,
• given a compcat, we can use comprehensions to define a kernel-pair-like

comonad.

Definition [Jacobs, 1999]

Let p : E → B a fibration. A weakening and contraction comonad on p is a comonad
(K, ε, ν) on E with ε cartesian and for each cartesian map in E its naturality square is a
pullback.

Remark. They are equivalent to comprehension categories.
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Weakening and contraction comonads

Definition [Jacobs, 1999]

Let p : E → B a fibration. A weakening and contraction comonad on p is a comonad
(K, ε, ν) on E with ε cartesian and for each cartesian map in E its naturality square is a
pullback.

E

B

K

p

KA = AχA models extension
ε : K ⇒ Id models weakening
ν : K ⇒ KKmodels contraction

Γ.A ` A Type
from Γ ` B Type to Γ.A ` B Type
from Γ.A.A ` B Type to Γ.A ` B Type
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Now to 2-categories

We use the 2-categorical structure of both Fib and Cmd!

Theorem [C.-Emmenegger, 2023]

The classical comonad-adjunction adjunction lifts as follows.

CompCat wcCmd GCwfloose

wcCmd GCwf

Cmd AdjlooseL

Cmd AdjL

Id

EM

C

C

EM

ÊM

Ĉ

Id ÊM

Ĉ

≡

≡

⊣

⊣

⊣

≡

The comprehension biequivalence A 2-dimensional analysis of comprehension 30/40



Cmd has 0-cells (C, K, ε, ν)
1-cells (H, θ) : (C, K, ε, ν) → (C′, K′, ε′, ν ′) with H : C → C′ and θ : HK ⇒ K′H

s.t. ε′H ∗ θ = Hε, ν ′H ∗ θ = K′θ ∗ θK ∗ Hν
2-cells φ : (H1, θ1) ⇒ (H2, θ2) is φ : H1 ⇒ H2

s.t. (K′φ)θ1 = θ2(φK)

wcCmd has 0-cells (p, C, K, ε, ν)
1-cells (H, θ,C) : (p, C, K, ε, ν) → (p′, C′, K′, ε′, ν ′)

with (H, θ) a 1-cell in Cmd and (H,C) a 1-cell in Fib
2-cells (φ, ψ) : (H1, θ1,C1) ⇒ (H2, θ2,C2)

with φ a 2-cell in Cmd and (φ, ψ) a 2-cell in Fib
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Recap

Type theory
E B2

B
p cod

χ E

B

K

p

U̇ U

B
uu̇

Σ

∆

⊣

contexts Ob(B) Ob(B) Ob(B)
types Ob(E) Ob(E) Ob(U)

Γ ` A Type pA = Γ pA = Γ uA = Γ
Γ.A → Γ χA pεA uεA

Γ.A dom(χA) pKA uΣ∆A
A+ (A in Γ.A) AχA KA Σ∆A

terms sections sections Ob(U̇)
Γ ` a : A section of χA section of εA Σa = A
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A lesson from doctrines

In Doc the 2-category of doctrines we have LTT the “syntactic” doctrine of a given
theory and S, the subset doctrine.

Lemma

1-cells in Doc LTT → S ↔ set-based models of T

2-cells in Doc LTT S ↔ morphisms of set-based models of T

Intuitively, we map a variable the the set of its extension, and a formula to the subset
where it is true. Both doctrines encode the structure needed, the maps from one to
the other describes the process of modeling something with something else.
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Learning the lesson

Ambient 2-category syntactic object semantic object
Doc LTT subset doctrine

CompCat χsyn ???

What candidates are we interested in for the role of the semantic object?
Historically, simplicial sets, so let us start there...
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The topos comprehension on sSet
Recall that sSet = PSh(∆∆), with∆∆ the simplex category, is a (Grothendieck) topos.
Each topos induces a comprehension category via its subobject classifier, in this
case Ω is Ωn = {sieves on [n]} and> : 1 → Ω picks out the maximal sieve.

sSet/Ω sSet2 {A : φ} 1

sSet A Ω
dom cod

χ

⊤

ϕ

χϕ
⌟

This is not quite right, why?

It is proof irrelevant!
A {A : φ} 1

A Ω

⊤

ϕ

χϕ
⌟

id

!

!
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Voevodsky’s model I

[Voevodsky, 2015, Kapulkin and Lumsdaine, 2021] describe how to get from sSet, for a
given inaccessible cardinal α, a contextual category Cα (such that for β < α
inaccessible it contains a universe Uβ satisfying UA).

1. Wα : sSetop → Set, Wα(X) = {isos classes of α-small well ordered morphisms into X}

2. Wα is representable and represented by aWα in sSet

3. call qα : W̃α → Wα the sSet morphism associated to idWα

4. consider Uα ↪→ Wα of morphisms that are Kan fibrations2, represented by an Uα

5.
Ũα W̃α

Uα Wα

qαpα
def
=

⌟ Uα(X) F
⟨f⟩
↠ X

sSet(X,Uα) X f→ Uα

∼

2fibrations wrt the standard model category on sSet
An application to simplicial sets A 2-dimensional analysis of comprehension 36/40



Voevodsky’s model II

6. pα is a universe in sSet i.e. a choice of pb exists
(X; f) Ũα

X Uα

pα

f

P(X,f)

Q(f)

⌟

We construct (the split comprehension category associated to) Cα.

Tα C2
α

Cα

χα

codp

(Cα)n = {fn = (f1, . . . , fn) ∈ (MorsSet)n | fi : (1; f1, . . . , fi−1) → Uα}
Cα(fn,gm

) = sSet( (1; f1, . . . , fn), (1;g1, . . . ,gm))

(Tα)n = {fmap in Cα s.t. f : fm+n → fm and f = P ◦ · · · ◦ P}
Tα(f,g) = {squares in Cα}
χ(f) = f

Lemma
For each α inaccessible there is a 1-cell χsyn → χα in CompCatsplit.

Proof. By structural induction, given that Cα is a contextual category.
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Kan fibrations

What if we directly use Kan fibrations?
In fact, their inclusion into sSet2 induces a (non split) compcat,

Kan sSet2

sSet

χK

codcod

moreover

Lemma
For each α inaccessible there is a 1-cell χα → χK in CompCatfull.

Proof. Map (f1, . . . , fn) to ( (1; f1, . . . , fn−1); fn ).
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Is this it?

For α ≤ α′ inaccessible, we have the following in CompCat.

χα

χsyn χK

χα′

Question 1. How much is χK “the” semantic object for MLTT? For example, can we
build out of a generic χsyn → χK a contextual category?
Question 2. What other object might we be interested in considering?
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Thank you for listening!
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