A 2-dimensional analysis of comprehension

HoTT/UF workshop

Greta Coraglia

BRIO - Bias, Risk and Opacity in AI
Logic Uncertainty Computation Information Lab
Università degli Studi di Milano

Overview

1. Comprehension as an adjoint
2. Comprehension structures
3. Substitution
4. Looking for dimension 2 in dependent types
5. The comprehension biequivalence
6. An application to simplicial sets

Logic and adjunctions

In [Lawvere, 1969] and [Lawvere, 1970] many logical concepts are shown to be part of an adjoint pair.

$$
\begin{gathered}
\text { terminal } \dashv \top \\
\perp \dashv \text { terminal } \\
\text { diagonal } \dashv \wedge \\
\vee \dashv \text { diagonal } \\
-\wedge A \dashv A \Rightarrow- \\
\exists \dashv \text { weakening } \\
\text { weakening } \dashv \forall
\end{gathered}
$$

Comprehension is an adjoint as well. How?

Logic and adjunctions: how-to

Let $P: \mathcal{B}^{\circ p} \rightarrow$ InfSL an elementary existential doctrine, i.e.

- \mathcal{B} a category with finite products,
- P a product-preserving functor,
where intuitively \mathcal{B} is the category of contexts and substitutions and on a given Γ, $P(\Gamma)$ is the inf-semilattice of predicates on Γ, such that (elem) for all Γ there exists $\delta_{\Gamma} \in P(\Gamma \times \Gamma)$ s.t. for all Θ

$$
\begin{aligned}
& æ_{\Theta, \Gamma}: P(\Theta \times \Gamma) \longrightarrow P(\Theta \times(\Gamma \times \Gamma)) \\
& A \mapsto P_{\left\langle\mathrm{pr}_{1}, \mathrm{pr}_{2}\right\rangle}(A) \wedge P_{\left\langle\mathrm{pr}_{2}, \mathrm{pr}_{3}\right\rangle}\left(\delta_{\Gamma}\right)
\end{aligned}
$$

is left adjoint to $P_{\left\langle\operatorname{pr}_{1}, \mathrm{pr}_{2}, \mathrm{pr}_{2}\right\rangle}$, and
(ex) for all $\sigma: \Theta$, the reindexing P_{σ} has a left adjoint \exists_{σ}

+ naturality + coherence.

First-order logic

Example (Tarski-Lindenbaum doctrine)

Let \mathcal{T} be a first-order theory in a language \mathcal{L} with variables V. Consider ctx of variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and substitutions $\left[t_{1} / y_{1}, \ldots, t_{m} / y_{m}\right]=[t / y]: x \rightarrow y$ and the functor $L T_{\mathcal{T}}$: ctx $^{\mathrm{op}} \rightarrow \mathbf{I n f S L}$
$L T_{\mathcal{T}}: x \mapsto\{$ wff formulae with free (at most) $x\} / \vdash_{\vdash_{\mathcal{T}}}$

$$
\begin{aligned}
& A \longmapsto P_{\left\langle\mathrm{pr}_{1}, \mathrm{pr}_{2}\right\rangle} \\
& (A) \wedge P_{\left\langle\operatorname{pr}_{2}, \mathrm{pr}_{3}\right\rangle}(\delta) \\
& y, x \vdash A(y, x) \rightsquigarrow y, x, x^{\prime} \vdash A(y, x) \wedge \delta\left(x, x^{\prime}\right) \\
& P(y, x) \xrightarrow{\stackrel{æ_{y, x}}{\perp}} P(y, x, x) \\
& \text { and } \\
& y, x, x^{\prime} ; A(y, x) \wedge \delta\left(x, x^{\prime}\right) \vdash B\left(y, x, x^{\prime}\right) \text { iff } \\
& y, x ; A(y, x) \vdash B(y, x, x)
\end{aligned}
$$

First-order logic

Example (Tarski-Lindenbaum doctrine)

Let \mathcal{T} be a first-order theory in a language \mathcal{L} with variables V. Consider ctx of variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and substitutions $\left[t_{1} / y_{1}, \ldots, t_{m} / y_{m}\right]=[t / y]: x \rightarrow y$ and the functor $L T_{\mathcal{T}}:$ ctx $^{\mathrm{OP}} \rightarrow \mathbf{I n f S L}$
$L T_{\mathcal{T}}: x \mapsto\{$ wff formulae with free (at most) $x\} / \vdash_{\vdash \mathcal{T}}$

$$
\begin{aligned}
& A \longmapsto \exists y . A \\
& P(y, x) \underset{\stackrel{\perp}{\mathrm{Pr}_{2}}}{\stackrel{\exists_{\mathrm{pr}}^{2}}{ }} P(x) \\
& y, x \vdash A(y, x) \rightsquigarrow x \vdash \exists y . A(y, x) \\
& \text { and } \\
& x ; \exists y . A(y, x) \vdash B(x) \text { iff } \\
& y, x ; A(y, x) \vdash B(x)
\end{aligned}
$$

The comprehension adjunction

Let $P: \mathcal{B}^{\circ p} \rightarrow$ InfSL an elementary existential doctrine. Then one can define

$$
\mathcal{B}_{/ \Gamma} \rightarrow P(\Gamma): \quad \Theta \xrightarrow{\sigma} \Gamma \mapsto \exists_{\sigma}\left(1_{\Theta}\right) .
$$

Example (Subsets)

Consider the eed Sub: Set $^{\text {OP }} \rightarrow \mathbf{I n f S L}, A \mapsto 2^{A}$.

$$
\operatorname{Set}_{/ A} \rightarrow 2^{A}: \quad B \xrightarrow{f} A \mapsto \exists_{f}\left(1_{B}\right)=\bar{f}
$$

where $\bar{f}(a)=1$ iff $a \in \operatorname{Im}(f)$

Definition (Comprehension schema)

An eed satisfies the comprehension schema if for all Γ the functor above has a right adjoint $\{\Gamma:-\}$ which is natural in Γ.

Proposition

The subset doctrine satisfies the comprehension schema.

$$
\begin{aligned}
& f: B \rightarrow A \longmapsto \bar{f} \\
& \text { Set }_{/ A} \underset{\{A:-\}}{\exists_{-}\left(1_{\text {dom }-}\right)} 2^{A} \\
& \iota_{R}:\{A: R\} \rightarrow A \longleftarrow R
\end{aligned}
$$

*we abuse the notation $\{A:-\}$ a bit
If computing \bar{f} produces $\bar{f}(a)=1$ iff $a \in \operatorname{lm}(f)$, then $\{A: R\}=\{a \in A \mid R(a)=1\}$.

Comprehension structures

Instead of:

Sub: Set ${ }^{\text {op }} \rightarrow$ InfSL and $\{\Gamma:-\}: P(\Gamma) \rightarrow \mathcal{B}_{/ \Gamma}$ natural in Γ, consider
$p: \operatorname{Sub} \rightarrow \operatorname{Set}^{1}$ and $\{+:-\}, \iota$.

Definition ([Melliès and Rolland, 2020])

A comprehension structure on a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ is a pair $\{+:-\}, \iota$ with $\{+:-\}: \mathcal{E} \rightarrow \mathcal{B}$ a functor and $\iota:\{+:-\} \Rightarrow p$ a natural transformation.

[^0]
Comprehension structures in the literature

The following are all comprehension structures (in order of increasing complexity).

- comprehension categories [Jacobs, 1993]: p is a fibration, $\bar{\imath}$ preserves cartesian maps

$$
{ }^{\{+:-\}}\left(\Rightarrow L^{p}\right.
$$

Set

- D-categories [Ehrhard, 1988]: as above, plus a terminal object functor 1 s.t. $1 \dashv \bar{\iota}$ dom
- doctrine comprehensions [Lawvere, 1970]: as above, plus p is bifibration

We want to do logic, so we focus on fibrations, but many results apply to generic comprehension structures.

Why fibrations?

Given a functor $p: \mathcal{E} \rightarrow \mathcal{B}, s$ is said to be p-cartesian (or cartesian) over σ iff $p(s)=\sigma$ and for all r and τ such that
$p(r)=\sigma \circ \tau$ there is a unique t such that
$r=s \circ t$ and $p(t)=\tau$.
If s is cartesian and over σ, it is said to be a cartesian lifting of σ.

Definition ([Grothendieck, 1961])

A functor p is a fibration iff for all $\sigma: \Theta \rightarrow p A$ there exists a s: $B \rightarrow A$ cartesian over σ.

[^1]
What fibrations?

Example (Codomain functor)
Consider the functor cod: $\mathcal{B}^{2} \rightarrow \mathcal{B}$. A map is cod-cartesian iff it is a pullback in \mathcal{B}.

Fibres and reindexing

Definition ([Grothendieck, 1961])

A functor p is a fibration iff for all $\sigma: \Theta \rightarrow p A$ there exists a s:B $\rightarrow A$ cartesian over σ.
It is easy to see that, for a given σ, its lifting is unique up to (vertical) isomorphism.

- For each Γ, we can define a category \mathcal{E}_{Γ} of objects over Γ and maps over id ${ }_{\Gamma}$ (called vertical), called the fibre over Γ.
- For each $\sigma: \Theta \rightarrow \Gamma$, existence of the cartesian liftings allows us to move from \mathcal{E}_{Γ} to \mathcal{E}_{Θ} (this is not precisely functorial, because of uniqueness up to iso of the lifting!).
$\mathcal{E}_{\Theta} \stackrel{---\mathcal{E}_{\Gamma}}{\sigma^{*}}$
$\Psi \quad \Psi$

$$
A \sigma \longrightarrow A
$$

$\Theta \xrightarrow[\sigma]{ } \Gamma \quad \mathcal{B}$$p$

Fibrations and pseudofunctors

Suppose we always have a way to decide on a given lifting for each pair (A, σ), that is each fibration comes equipped with a cleavage. Then we have the following.
Theorem ([Grothendieck, 1961])
There is a 2-equivalence $\operatorname{Fib}(\mathcal{B}) \cong \operatorname{PsdFun}\left[\mathcal{B}^{\circ p}\right.$, Cat $]$.

$$
\begin{aligned}
& \operatorname{Fib}^{\text {split }}(\mathcal{B}) \xrightarrow{\sim} \operatorname{Fun}\left[\mathcal{B}^{\circ p}, \text { Cat }\right] \\
& \operatorname{Fib}^{\text {disc }}(\mathcal{B}) \xrightarrow{\sim} \operatorname{Fun}\left[\mathcal{B}^{\text {op }}, \text { Set }\right] \\
& \text { Fib }^{\text {faith }}(\mathcal{B}) \xrightarrow{\sim} \operatorname{Doc}(\mathcal{B})=\operatorname{Fun}^{\times-p r}\left[\mathcal{B}^{\circ p}, \text { InfSl }\right]
\end{aligned}
$$

The thing with (non) uniqueness

Bien entendu, il y a interêt le plus souvent à raisonner directement sur des catégories fibrées sans utiliser des clivages explicites, ce qui dispense en particulier de faire appel, pour la notion simple de [...] foncteur cartesién, à une interprétation pesante comme ci-dessus. C'est pour éviter des lourdeurs insupportables, et pour obtenir des énoncés plus intrinsèques, que nous avons dû renoncer à partir de la notion de catégorie clivée [...], qui passe au second rang au profit de celle de catégories fibrée. ll est d'ailleurs probable que, contrairement à l'usage encore prépondérant maintenant, lié à d'anciennes habitudes de pensée, il finira par s'avérer plus commode dans les problèms universels, de ne pas mettre l'accent sur une solution supposée choisie une fois pour toutes mais de mettre toutes les solutions sur un pied d'egalité.

Of course, it is most often useful to reason directly about fibred categories without using explicit cleavages, without the need in particular to appeal, for the simple notion of [...] cartesian functor, to a heavy interpretation as above. It is to avoid unbearable heaviness, and to obtain more intrinsic enunciations, that we had to renounce (or depart) from the notion of split categories [...], which takes second place with respect to that of fibred categories. It is moreover probable that, contrary to the use still prevalent now, linked to old ways of thinking, it will end up being more convenient for universal problems, not to put the emphasis on a supposed solution chosen once and for all, but to put all solutions on an equal footing.
[Grothendieck, 1961]

The syntactic comprehension category

Recall that a comprehension category is a comprehension

\mathcal{B}
Given a notion of type theory (in the sense of [Martin-Löf, 1984]) we can define a comprehension category having:

- $\mathcal{B}_{\text {syn }}$ of $=$-equivalence classes of contexts $[\Gamma]=\left[x_{1}: A_{1}\right], \ldots,\left[x_{n}: A_{n}\right]$ and maps

$$
t:[\Theta] \rightarrow[\Gamma] \quad \text { iff } \quad \text { for all } i, \Theta \vdash t_{i}: A_{i}\left[t_{1} / x_{1}, \ldots, t_{i-1} / x_{i-1}\right]
$$

- $\mathcal{E}_{\text {syn }}$ of =-equivalence classes of typing judgements [$\Gamma \vdash A$ Type] and substitutions

$$
(t, s):[\Theta \vdash B \text { Type }] \rightarrow[\Gamma \vdash A \text { Type }] \text { iff } \quad \Theta, y: B \vdash s: A[t / x]
$$

- $\chi_{\text {syn }}:[\Gamma \vdash A$ Type $] \mapsto\left(\left(x_{1}, \ldots, x_{n}\right):[\Gamma, x: A] \rightarrow[\Gamma]\right) \quad \ldots$ and terms?

Terms

We need to find a categorical object corresponding to a term.

$$
\begin{aligned}
& \Gamma \vdash x_{1}: A_{1} \\
& \cdots \\
& \Gamma \vdash x_{n}: A_{n}\left[x_{1} / x_{1}, \ldots, x_{n-1} / x_{n-1}\right] \\
& \Gamma \vdash \operatorname{smth}: A\left[x_{1} / x_{1}, \ldots, x_{n} / x_{n}\right]
\end{aligned}
$$

Hence we consider sections of comprehensions.

Interpretation

Recall that a comprehension category is a comprehension structure $\{+:-\}, \iota$ on a functor $p: \mathcal{E} \rightarrow \mathcal{B}$ such that p is a fibration and $\bar{\iota}: \mathcal{E} \rightarrow \mathcal{B}^{2}$ preserves cartesian maps.

contexts
types in context
comprehension/context extension
extended context
terms of type A
substitution

Admissible rules

What rules are admissible here?
$\frac{\vdash \Gamma, x: A, \Delta \mathrm{ctx}}{\Gamma, x: A, \Delta \vdash x: A}(\operatorname{Var}) \quad \frac{\Gamma \vdash a: A \quad \Gamma, x: A, \Delta \vdash \mathcal{J}}{\Gamma, \Delta[a / x] \vdash \mathcal{J}[a / x]}($ Sbst $) \quad \frac{\Gamma \vdash A \text { Type } \quad \Gamma, \Delta \vdash \mathcal{J}}{\Gamma, x: A, \Delta \vdash \mathcal{J}}($ Wkn $)$
for $\mathcal{J}::=\Gamma \vdash A$ Type, $\Gamma \vdash A=A^{\prime}$ Type, $\Gamma \vdash a: A, \Gamma \vdash a=a^{\prime}: A$, plus classical rules for definitional equality, see [Hofmann, 1997]. Let's see how.

Remark. Existence of the (unique up to iso) cartesian lifting of σ at A induces a suitable pullback. We might denote $B=A \sigma$ $B \xrightarrow{\text { cart }} A$
 in this case, but mind that (if we had to have one) this forgets our choice!

The rule (Var)

$$
\frac{\vdash \Gamma, x: A, \Delta \mathrm{ctx}}{\Gamma, x: A, \Delta \vdash x: A}(\text { Var })
$$

The rules (Sbst) and (Wkn)

for $\mathcal{J}=b: B$

$$
\frac{\Gamma \vdash a: A \quad \Gamma, x: A, \Delta \vdash b: B}{\Gamma, \Delta[a / x] \vdash b[a / x]: B[a / x]} \text { (Sbst) }
$$

$$
\frac{\Gamma \vdash A \text { Type } \quad \Gamma, \Delta \vdash b: B}{\Gamma, x: A, \Delta \vdash b: B}(\mathrm{Wkn})
$$

Another kind of model

A simple definition hides a lot of structure. Another perspective is that of categories with families.

Definition (Cwf, [Dybjer, 1996])

A category with families is the data of

- a category \mathcal{B} with terminal object T;
- a functor $F=(\mathrm{Ty}, \mathrm{Tm}): \mathcal{B}^{\circ \mathrm{p}} \rightarrow$ Fam, with Fam of set-indexed sets;
- for each Γ in \mathcal{B} and A in $\operatorname{Ty}(\Gamma)$ an object $\Gamma . A$ in \mathcal{B}, together with two projections $\mathrm{p}_{A}: \Gamma . A \rightarrow \Gamma$ and $\mathrm{v}_{A} \in \operatorname{Tm}\left(\Gamma . A, \operatorname{Ty~}_{\mathrm{p}}(A)\right)$ such that for each $\sigma: \Theta \rightarrow \Gamma$ and $a \in \operatorname{Tm}(\operatorname{Ty} \sigma(A))$ there exists a unique morphism $\Theta \rightarrow \Gamma . A$ making the obvious triangles commute.

$$
F(\Gamma)=\left(\operatorname{Ty}(\Gamma),(\operatorname{Tm}(\Gamma, A))_{A \in \operatorname{Ty}(\Gamma)}\right)
$$

A discrete equivalence

Theorem (Cartmell, Moggi, Hofmann, Dybjer, Awodey)

Cwfs are equivalent to comprehension categories with p discrete.

p discrete
[Jacobs, 1993]

u, \dot{u} discrete
[Awodey, 2018]

$$
\begin{aligned}
& \mathrm{Ty}: \mathcal{B}^{\mathrm{op}} \rightarrow \text { Set } \\
& \mathrm{Tm}:\left(\int \mathrm{Ty}\right)^{\mathrm{op}} \rightarrow \text { Set }
\end{aligned}
$$

[Dybjer, 1996]

A general biequivalence

We extend the result to a biequivalence involving more than just discrete fibrations.

- Non-discrete: so that we can talk "syntactically" about theories where \mathcal{E}_{Γ} is more than a set.
$\rightsquigarrow e . g$. subtyping
- Biequivalence: so that we can learn a lesson from doctrines and manipulate the notion of model, describe model morphisms and so on.
\rightsquigarrow internalizing allows us to do more stuff

Generalized cwfs

Definition [C.-Di Liberti, 2022]

A generalized category with families (or judgemental $d t t$) is the data of two fibrations u, \dot{u}, a functor Σ making the triangle commute and preserving cartesian maps (i.e. a 1-cell in Fib), Δ right adjoint to Σ with cartesian unit and counit.

As in the discrete case, \mathcal{U} collects types (in contexts), \dot{U} terms (fibred over types and contexts), Σ performs typing, $\Delta:(\Gamma \vdash A$ Type $) \mapsto(\Gamma . A \vdash x: A)$.

Comparing compcats and gcwfs

Proposition [C.-Emmenegger, 2023]
A compcat induces a gcwf, and viceversa.

Comparing compcats and gcwfs

Proposition [C.-Emmenegger, 2023]

A compcat induces a gcwf, and viceversa.

$$
A \underset{a \in \operatorname{Sec}_{\chi}}{ } A \chi_{A} \xrightarrow[\overline{\chi_{A}}]{ } A
$$

Does this ring any bells?

It's all comonads!

When trying to compare the two, one quickly notices the ubiquity of comonads:

- a gcwf is defined as an adjunction, hence we always have a comonad $\Sigma \Delta$,
- given a compcat, we can use comprehensions to define a kernel-pair-like comonad.

Definition [Jacobs, 1999]

Let $p: \mathcal{E} \rightarrow \mathcal{B}$ a fibration. A weakening and contraction comonad on p is a comonad (K, ϵ, ν) on \mathcal{E} with ϵ cartesian and for each cartesian map in \mathcal{E} its naturality square is a pullback.

Remark. They are equivalent to comprehension categories.

Weakening and contraction comonads

Definition [Jacobs, 1999]

Let $p: \mathcal{E} \rightarrow \mathcal{B}$ a fibration. A weakening and contraction comonad on p is a comonad (K, ϵ, ν) on \mathcal{E} with ϵ cartesian and for each cartesian map in \mathcal{E} its naturality square is a pullback.

$K A=A \chi_{A}$ models extension
$\epsilon: K \Rightarrow$ Id models weakening
$\nu: K \Rightarrow K K$ models contraction
$\Gamma . A \vdash A$ Type
from $\Gamma \vdash B$ Type to $\Gamma . A \vdash B$ Type
from $\Gamma . A . A \vdash B$ Type to $\Gamma . A \vdash B$ Type

Now to 2-categories

We use the 2-categorical structure of both Fib and Cmd!
Theorem [C.-Emmenegger, 2023]
The classical comonad-adjunction adjunction lifts as follows.

Cmd has 0-cells ($\mathcal{C}, K, \epsilon, \nu$)
1-cells $(H, \theta):(\mathcal{C}, K, \epsilon, \nu) \rightarrow\left(\mathcal{C}^{\prime}, K^{\prime}, \epsilon^{\prime}, \nu^{\prime}\right)$ with $H: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ and $\theta: H K \Rightarrow K^{\prime} H$
s.t. $\epsilon^{\prime} H * \theta=H \epsilon, \nu^{\prime} H * \theta=K^{\prime} \theta * \theta K * H \nu$

2-cells $\phi:\left(H_{1}, \theta_{1}\right) \Rightarrow\left(H_{2}, \theta_{2}\right)$ is $\phi: H_{1} \Rightarrow H_{2}$
s.t. $\left(K^{\prime} \phi\right) \theta_{1}=\theta_{2}(\phi K)$
wcCmd has 0 -cells $(p, \mathcal{C}, K, \epsilon, \nu)$
1-cells $(H, \theta, C):(p, \mathcal{C}, K, \epsilon, \nu) \rightarrow\left(p^{\prime}, \mathcal{C}^{\prime}, K^{\prime}, \epsilon^{\prime}, \nu^{\prime}\right)$ with (H, θ) a 1-cell in Cmd and (H, C) a 1-cell in Fib
2-cells $(\phi, \psi):\left(H_{1}, \theta_{1}, C_{1}\right) \Rightarrow\left(H_{2}, \theta_{2}, C_{2}\right)$
with ϕ a 2-cell in Cmd and (ϕ, ψ) a 2 -cell in Fib

Recap

Type theory		$\begin{aligned} & \kappa \subset \mathcal{E} \\ & \downarrow^{p} \\ & \mathcal{B} \end{aligned}$	
$\begin{gathered} \text { contexts } \\ \text { types } \\ \Gamma \vdash A \text { Type } \\ \Gamma . A \rightarrow \Gamma \\ \Gamma . A \\ A^{+}(A \text { in } \Gamma . A) \\ \text { terms } \\ \Gamma \vdash a: A \end{gathered}$	$\operatorname{Ob}(\mathcal{B})$ $\operatorname{Ob}(\mathcal{E})$ $p A=\Gamma$ χ_{A} $\operatorname{dom}\left(\chi_{A}\right)$ $A \chi_{A}$ sections section of χ_{A}	$\operatorname{Ob}(\mathcal{B})$ $\operatorname{Ob}(\mathcal{E})$ $p A=\Gamma$ $p \epsilon_{A}$ $p K A$ $K A$ sections section of ϵ_{A}	$\begin{gathered} \mathrm{Ob}(\mathcal{B}) \\ \mathrm{Ob}(\mathcal{U}) \\ u A=\Gamma \\ u \epsilon_{A} \\ u \Sigma \Delta A \\ \Sigma \Delta A \\ \mathrm{Ob}(\dot{\mathcal{U}}) \\ \Sigma a=A \end{gathered}$

A lesson from doctrines

In Doc the 2-category of doctrines we have $L T_{\mathcal{T}}$ the "syntactic" doctrine of a given theory and S, the subset doctrine.

Lemma

$$
\text { 1-cells in Doc } L T_{\mathcal{T}} \rightarrow S \quad \leftrightarrow \quad \text { set-based models of } \mathcal{T}
$$

2-cells in Doc $L T_{\mathcal{T}} \xrightarrow{\downarrow} S \quad \leftrightarrow \quad$ morphisms of set-based models of \mathcal{T}

Intuitively, we map a variable the the set of its extension, and a formula to the subset where it is true. Both doctrines encode the structure needed, the maps from one to the other describes the process of modeling something with something else.

Learning the lesson

Ambient 2-category	syntactic object	semantic object
Doc	$L T_{\mathcal{T}}$	subset doctrine
CompCat	$\chi_{\text {syn }}$???

What candidates are we interested in for the role of the semantic object?
Historically, simplicial sets, so let us start there...

The topos comprehension on sSet

Recall that sSet $=\operatorname{PSh}(\Delta)$, with Δ the simplex category, is a (Grothendieck) topos. Each topos induces a comprehension category via its subobject classifier, in this case Ω is $\Omega_{n}=\{$ sieves on $[n]\}$ and $T: 1 \rightarrow \Omega$ picks out the maximal sieve.

This is not quite right, why?

It is proof irrelevant!

Voevodsky's model I

[Voevodsky, 2015, Kapulkin and Lumsdaine, 2021] describe how to get from sSet, for a given inaccessible cardinal α, a contextual category \mathcal{C}_{α} (such that for $\beta<\alpha$ inaccessible it contains a universe U_{β} satisfying $U A$).

1. $\mathbf{W}_{\alpha}:$ sSet $^{\text {op }} \rightarrow$ Set, $\mathbf{W}_{\alpha}(X)=\{$ isos classes of α-small well ordered morphisms into $X\}$
2. \mathbf{W}_{α} is representable and represented by a W_{α} in sSet
3. call $q_{\alpha}: \tilde{W}_{\alpha} \rightarrow W_{\alpha}$ the sSet morphism associated to $\mathrm{id}_{W_{\alpha}}$
4. consider $\mathbf{U}_{\alpha} \hookrightarrow \mathbf{W}_{\alpha}$ of morphisms that are Kan fibrations ${ }^{2}$, represented by an U_{α}

$$
\begin{aligned}
& \tilde{U}_{\alpha} \longrightarrow \tilde{W}_{\alpha} \\
& 5 . \\
& \begin{aligned}
p_{\alpha}=\stackrel{\text { def }}{=} & \lrcorner{ }^{\downarrow} q_{\alpha} \\
U_{\alpha} & \longrightarrow W_{\alpha}
\end{aligned} \\
& \begin{array}{cc}
\mathbf{U}_{\alpha}(X) & F \stackrel{\langle f\rangle}{\rightarrow} X \\
\stackrel{\imath}{\downarrow} & \\
\operatorname{sSet}\left(X, U_{\alpha}\right) & X \xrightarrow{f} U_{\alpha}
\end{array}
\end{aligned}
$$

[^2]
Voevodsky’s model II

$$
(X ; f) \xrightarrow{Q(f)} \tilde{U}_{\alpha}
$$

6. p_{α} is a universe in sSet i.e. a choice of pb exists

$$
\begin{aligned}
& P(X, f) \mid \stackrel{\perp}{\downarrow} \\
& X{ }^{\mid p_{\alpha}} \\
& U_{\alpha}
\end{aligned}
$$

We construct (the split comprehension category associated to) \mathcal{C}_{α}.

Lemma

For each α inaccessible there is a 1-cell $\chi_{\text {syn }} \rightarrow \chi_{\alpha}$ in CompCat ${ }^{\text {split }}$.
Proof. By structural induction, given that \mathcal{C}_{α} is a contextual category.

Kan fibrations

What if we directly use Kan fibrations?
In fact, their inclusion into sSet ${ }^{2}$ induces a (non split) compcat,

moreover

Lemma

For each α inaccessible there is a 1-cell $\chi_{\alpha} \rightarrow \chi_{K}$ in CompCat ${ }^{f u l l}$.
Proof. Map $\left(f_{1}, \ldots, f_{n}\right)$ to $\left(\left(1 ; f_{1}, \ldots, f_{n-1}\right) ; f_{n}\right)$.

Is this it?

For $\alpha \leq \alpha^{\prime}$ inaccessible, we have the following in CompCat.

Question 1. How much is χ_{K} "the" semantic object for MLTT? For example, can we build out of a generic $\chi_{\text {syn }} \rightarrow \chi_{K}$ a contextual category? Question 2. What other object might we be interested in considering?

Thank you for listening!

References I

Steve Awodey (2018)
Natural models of homotopy type theory
Mathematical Structures in Computer Science, pp 241-286.
G.C. and Ivan Di Liberti (2022)

Context, judgement, deduction
to appear.
G.C. and Jacopo Emmenegger (2023)

A 2-dimensional analysis of logical comprehensions
in preparation.
Peter Dybjer (1996)
Internal type theory
Types for Proofs and Programs, pp 120-134.
Thomas Ehrhard (1988)
Une sémantique catégorique des types dépendants
Ph.D. Thesis, Univ. Paris VII.
Alexander Grothendieck (1960-61)
Categoriés fibrées et descente (Exposé VI)
Revêtements étales et groupe fondamental, SGA 1

References II

Martin Hofmann (1997)
Syntax and Semantics of Dependent Types
Semantics and Logics of Computation, pp 79--130.
Bart Jacobs (1993)
Comprehension categories and the semantics of type dependency Theoretical Computer Science, vol. 107, 2, pp 169-207.

Bart Jacobs (1999)
Categorical logic and type theory
Elsevier.Krzysztof Kapulkin and Peter LeFanu Lumsdaine (2021)
The simplicial model of Univalent Foundations (after Voevodsky)
J. Eur. Math. Soc., vol 23, no 6, pp 2071-2126.
F. William Lawvere (1969)

Adjointness in foundations
Dialectica, vol. 23, 3/4, pp 281-296.
F. William Lawvere (1970)

Equality in hyperdoctrines and comprehension schema as an adjoint functor Proceedings of the American Mathematical Society, pp 1-14.

References III

Per Martin-Löf (1984)
Intuitionistic type theory
Studies in proof theory, vol 1.
Paul-André Melliès and Nicolas Rolland (2020)
Comprehension and quotient structures in the language of 2-categories
FSCD 2020
Vladimir Voevodsky (2015)
A C-system defined by a universe category
Theory Appl. Categ., vol 30, no 37, pp 1181-1215.

[^0]: ${ }^{1}$ Where Sub has objects (A, R) with A in Set and R : $A \rightarrow 2$ and maps those making the obvious triangle commute. This is the Grothendieck construction associated to P.

[^1]: * for the moment "fibration" = "Grothendieck fibration"

[^2]: ${ }^{2}$ fibrations wrt the standard model category on sSet

